Bachelor of Applied Science in Manufacturing Operations

Operations Management

OPM 311: Mathematical Techniques for Operations Management

This course provides students with the foundational mathematical tools required for operations management including acceptance sampling; decision theory including its application under uncertain conditions; the application of probability theory to determine the reliability of systems; solution of linear programming problems using graphical and computational methods; and the application of learning curves for planning and scheduling. These techniques are introduced in this course and then exercised and practiced through repeated application to real problems in other courses.

OPM 312: Forecasting and System Design

This course introduces students to forecasting and capacity planning tools for manufacturing and service organizations. Qualitative and quantitative techniques are discussed, and the pros and cons of each are identified. The selection of appropriate processes and facility layouts, and the design of work systems to optimize production are discussed; and the impact of good product design on production operations is highlighted. Maintenance planning is discussed including the differences between breakdown (reactive) and preventative (planned) maintenance. Techniques for job design such as methods analysis and time study methods are demonstrated. Both graphical and computational (spreadsheet) techniques are used throughout the course to solve a range of typical problems.

OPM 313: Quality Management

This course is designed to equip students with the managerial concepts and quantitative tools used in effective and efficient management of quality in manufacturing and service organizations. The course begins with the quality management concepts espoused by Deming and discusses some of the resulting approaches such as Total Quality Management (TQM), Six Sigma, ISO 9000 and AS 9100. Quality requirements specific to regulated industries such as biomedical devices and aerospace will also be surveyed. Students will learn how to plan, implement and manage a comprehensive quality management program within an organization with special emphasis on process documentation, staff training, and communication of results to management and auditors.

OPM 314: Logistical Planning & Supply Chain Management

A supply chain is a sequence of organizations involved in the production and delivery of a product or service. Supply chain management is the coordination of those organizations, and logistics is the management of the flow of resources e.g. goods, materials, information; between the organizations. This course will students will introduce students to the complexities of domestic and global supply chains including consideration of make/buy and outsourcing decisions. The importance of the
procurement function is explored, and inventory management techniques are presented including the application of mathematical approaches to solve typical problems. Finally, the use of materials resource planning (MRP), manufacturing resource planning (MRPII) and enterprise resource planning (ERP) systems in operations management is examined.

OPM 315: Lean Concepts and Applications

Lean production is a modern management practice applicable to both manufacturing and service industries that considers the expenditure of resources for any goal other than the creation of value for the end customer to be wasteful and thus a target for elimination. This course introduces students to the theory behind Lean including concepts such as Value Stream Mapping, Workplace Organization and Standardization, 5-S and Cellular Flow. Terminology, including Kan Ban and Total Production Maintenance, and tools such as Gap Analysis, 5 Why’s, root cause analysis, Pareto charts, and cause effect diagrams are covered. The importance of workforce development and ongoing training to Lean implementation is stressed, and students will learn about the how to apply Lean techniques to both industrial and service operations.

OPM 411: Facility Layout and Materials Handling

This course covers the design and optimal layout of industrial facilities, materials handling systems, and warehousing for the most efficient flow of raw materials, work-in-process, and completed product. Students, working in groups, will be required to develop a written proposal for a newly designed or modified facility including a financial justification for the project, and carry out a verbal presentation of their results.

OPM 412: Workplace Health and Safety Management

This course provides a foundation for students to take on responsibility for the management of health and safety in the workplace. Students will learn about OSHA and the inspection process, identification of safety hazards and implementation of preventative measures, and developing a formal health and safety training program. The course will also cover work design and ergonomics aimed at increasing operator effectiveness and reducing production costs.

OPM 413: Measurement and Statistical Process Control

Statistical process control (SPC) is a quality control technique which employs statistical methods to monitor and control a process to ensure that it operates at its full potential, and that the finished products meet specified criteria. In this course, students will be introduced to key tools used in SPC include control charts, continuous improvement, acceptance sampling, and the design of experiments. Students will also be taught about fundamental metrology principles including error measurement and analysis, the impact of temperature and pressure on precision measurement; equipment calibration; and advanced test and measurement techniques.
Bachelor of Applied Science in Manufacturing Operations – Course Descriptions

Business Skills

ENGL 310: Business Communications

This course focuses on audience-oriented communication in the business environment. Course content includes writing reports, proposals, memoranda, and e-mails; graphical presentation of data using Excel; and developing and delivering presentations using PowerPoint and other visual aids. Students will develop and demonstrate these communication skills individually, in smaller groups, and in presentations to larger audiences.

ECON 310: Managerial Economics

This course focuses on forecasting and estimating techniques; and on tools used to analyze projects, compare alternatives, and make sound business decisions based on economic principles such as time value of money, internal rate of return, and cost-benefit ratios. The course includes the use of Excel as a tool for analysis and decision making.

PHIL 310: Professional Ethics

This course aims to raise students’ awareness of ethical dilemmas that might occur at work, to show how such ethical issues are subject to management analysis and decision-making action, and to provide students with the conceptual tools necessary to identify and then develop an acceptable resolution of these dilemmas. The course will include the presentation of ethical arguments to groups, and debate on their merits.

PSYC 310: Organizational Psychology

This course examines how people behave and interact with each other at work with an emphasis on the way that this affects job performance. Topics covered in this course include the development of leadership skills; recruitment and retention; motivation and team building; managing change; and conflict resolution. Group work is used to build and practice the interpersonal skills critical for workplace management.

BUS 310: Project Management

Coordination of projects involving multiple tasks and resources, and the resolution of the conflicts that arise is a critical skill in business. This course teaches students some of the techniques necessary to develop realistic and comprehensive project plans; identify risk areas; monitor the plans; and deal with problems. The course will also cover management of the procurement process, and communication with project stakeholders. The course includes the use of Microsoft Project to develop and manage project plans.
Bachelor of Applied Science in Manufacturing Operations – Course Descriptions

Focused Study and Capstone Courses

OPM 491: Focused Study 1
OPM 492: Focused Study 2
OPM 493: Focused Study 3

These three courses provide students with opportunities to explore areas of professional interest and to develop a greater understanding of those areas through focused study and applied research under the direction of a faculty member and/or industry mentor. Topics to be studied will be agreed in conjunction with program faculty and approved by the program director; and each course will require both a written report and an oral presentation of the research findings.

OPM 498: Individual Capstone Project

This course involves the self-directed execution of a project in the field of manufacturing operations employing elements from many of the courses the student has already taken linked together in a methodical, systematic way. The topic to be studied will be agreed in conjunction with program faculty and approved by the program director; and a faculty member or industry mentor will be available throughout the course to act as an advisor. However, it is expected that the student demonstrates independent thought and self-direction during the project. The project may be carried out with an industry partner/employer. The course requires both a written report and an oral presentation of the project results.

OPM 499: Group Capstone Project

This course involves working as a team on a project in the field of manufacturing operations. The topic to be studied will be chosen by the group, agreed in conjunction with program faculty, and approved by the program director. A faculty member or industry mentor will be available throughout the course to act as an advisor. However, it is expected that the group is self-directing, and that individuals in the group demonstrate the ability to work with other team members during the project. The project may be carried out with an industry partner/employer. The course requires both a written project report and an oral presentation of the project results by the group, and individual summary reports by each student.